Electronic Structure Calculation

divide the methods generally:

« wavefunction based methods (quantum chemistry methods),
Hartree-Fock, Configuration Interaction, Mgller-Plesset perturbation Theory,
etc.

* electronic density methods,

Density Functional Theory (DFT), Time-Dependent DFT, Tight-binding DFT,
etc.

* semi-empirical methods

Used indistinctly by physicists and chemists nowadays, but the former were
developed by chemists and the later by physicist.

Goal: Solve the stationary Schrodinger equation: H b = e

where ¥ = ¥(r1,ra,--- ,7rn,) is the many-electron wavefunction.

Assuming that there is a complete set of single particle spin-orbitals: ¢; , = ¢n,



(I)k(rlvr% T 7TNe)

is a possible configuration, with k = (n{,n,, ...) for the various spin-orbitals
in various ways with N, electrons, and properly anti-symmetrized.

The Slater determinant representation
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The most general state ¢(r1,72,--- ,7n.) = >, CoPr(ri,r2, -+ ,7N,)
sum over all possible configurations k& = |ny,ng, - )
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Expanding 1 via determinants, we arrive at the secular equation

Z (Hg g — €0p17) Cir =0
k/

with eigenstates |¢q) = ), Ck.a|Pk)

The method outlined is called Configuration Interaction (CI).
It relies on a proper choice of

 spin-orbitals

* a finite set of representative configurations

Problem is that the number of configurations quickly increases with the number of
spin-orbitals (n)

n!
(n — Ne)!N!

total number of configurations is (]T\L,) =

Example, for a single H,O molecule, that has 10 electrons. Using just 10 atomic
orbitals, times 2 spin states (20 spin-orbitals), the total configurations is 184756.



Electronic Structure Calculation:
Variational Calculus

In order to find and approximate solution we can use the variational method in

which a certain form of the wavefunctions is written in terms of unknown
parameters

B(&) = (W(&)|H|Y(€)) WY€) =1

The minimum of £(£) cannot be lower than the real ground state.

W(r O H[Y(r;€)) (W HY)

P = 9

E(&):§&— E(E) ) | EY] ¢ = E Y]

Variational Principle for the Hartree-Fock Method:

—~A
OE[]=E[p+ 0] -El]=0 =
In practical situations: ¥(r) = > Cqpqa(r) g
the variational parameter: v = {0C,} = ¢




Hartree-Fock Self Consitent Field (HF-SCF) Method

The simplest wavefunction for a many-body system is given by the Hartree-Fock
method, which takes into account only one configuration for the system (just one

Slater determinant). Therefore, in this case there is only correlation due to particle
exchange.

In any case, the configuration must be an eigenstate of the total spin.
Assuming that the hamiltonian does not contain spin operators.
S — R2S(S+1)
S. — KM, M=-8,--,+8
Two possibilities:
 closed shell, this is called restricted Hartree-Fock (RHF).
In this case M and S are both null (singlet state), and N, must be even.

Y = jlv ! det ‘¢1(7“1)51(7”2)%(?“3)52(7“4) v ¢Ne/2(rNe—1)$Ne (TNQ)

A
by o -
* restricted open-shell Hartree-Fock (ROHF).

I
doubly occupied followed by singly occupied. 4 % 4 % 4 %

eigenfunction of total 52 RHF ROHF UHF

with ¢1(r) = ¢i(r) T and ¢ (r) = ¢i(r) |




Hartree-Fock Self Consitent Field (HF-SCF) Method

The simplest wavefunction for a many-body system is given by the Hartree-Fock
method, which takes into account only one configuration for the system (just one

Slater determinant). Therefore, in this case there is only correlation due to particle
exchange.

In any case, the configuration must be an eigenstate of the total spin.
Assuming that the hamiltonian does not contain spin operators.

S — R2S(S+1)
S. — hM, M=-8,-,+S
Two possibilities:
 closed shell, this is called restricted Hartree-Fock (RHF).
In this case M and S are both null (singlet state), and N, must be even.

Y = jlv ! det ‘¢1(7“1)51(7”2)%(?“3)52(7“4) v ¢Ne/2(rNe—1)$Ne (TNQ)

A
++ 4- 4T
» open shell, unrestricted Hartree-Fock (UHF).
different orbitals for different spins; coupled egs. 4 % 4 % 4 %
In this case S is nonzero, with M in between. RHF ROHF UHF

with ¢1(r) = ¢i(r) T and ¢ (r) = ¢i(r) |




Hartree-Fock Self Consitent Field (HF-SCF) Method

Assuming that the N-body system does not include interparticle interactions
> hi=22Ti+ V()
Thus, for this hypothetical case, the exact solution is just a single Slater determinant

) = @y
and the total energy: e = ) . ¢;

If we allow interparticle interaction this is not enough!

Taking into account the Coulomb interaction between the electrons

v(r, ) = 2 /|F — 1]

The energy of the system for a single Slater determinant is written in the HF
method as
EHEF — <(I)k‘H‘(I)k>
] &
= ) hi+ 5 > Uioslpids) — (dicildioe)]
i i,j=1

which must be minimized by finding the optimum spin-orbitals, through the
variational procedure



Hartree-Fock Self Consitent Field (HF-SCF) Method

Applying the variational theory to determine the optimum spatial orbitals, the following
one-electron eigenvalue equation may be derived.

fiti = €ibs (1)
where the Fock operator is

" 1 N N A
fzz—ivg—FVNN—I—Zj\E{Q |:2<]]_ >"~Hn< ><F

short range Hartree Fock
interaction

direct Coulomb (Hartree) potential interaction: .J;(r)¢;(r) = <qu||ri—2r,||¢j>gbi(r)
exchange potential interaction: K;;(r)¢;(r) = <¢j’ﬁ|¢i>¢j (r)

Although (1) looks like a Schrodinger equation it is not. Its solution is

accomplished self-consistently, as the Coulomb and Exchange operators depends
on the orbitals one is seeking.

The total electronic energy is egp = 2 ZN /% e + ZAZ /21 (2J;5 — Kij)

with Jij = (60| pploids)  Kij = (0685|5515 00)

OO &



Hartree-Fock-Roothaan Equations

In practice:

A standard method for solving the HF-SCF equations involves expanding the HF
orbitals (also called molecular orbitals, MO) as a linear combination of atomic
orbitals (LCAQO). Therefore the variational procedure is carried out on the
coefficients of the expansion

PA(1) = D, Coapn(r)

the HF equations are reformulated as a set of algebraic with respect to the unknown

coefficients.
> p (Fap — €xSap) Coa =0

overlap matrix: Sqp = {(a|vp)

1
Fock matrix: Fop = hap + .y Ped [(ac|bd> — §<ac|bd>] = hab + Gap

population matrix: P.; = 2 Zf\cc C7Can
Self-consistent procedure:

PO - FO {C&O),ego)} —PU 5 FD {C&”,e&l)} ..

1
Total HF energy: Epgp =2) , €x — §Tr (PG)



Electronic Structure Calculation:
Density Functional Theory

many-body wavefunction is a complicated beast ¥ (r1,72,...,7Ne)
the ideal situation: use the charge density p(r) to obtain the properties of interest.

Earliest approximation by Thomas and Fermi (1927):

el
— - d rid
;/\F—de(r) ' // !7“1—2| A

2/3
=1 (372) / / p(r)>/*dr | degenerate electron gas

unstable for lack of exchange and correlation; in particular €. cp, => €corr

Slater (1951) derives an approximation for the exchange correlation:

9o [ 3

1/3
E.[p(r)] = -y (;) /p(r)4/3dr with a an adjustable parameter

Not in use anymore, but this work was provocative in its simplicity.



Density Functional Theory

Hohemberg-Kohn Theorems (1964)

Existence:
existence of energy representation via a universal functional; or GS density

determines H.

PHYSICAL REVIEW VOLUME 136, NUMBER 3B 9 NOVEMEBR 1964

Inhomogeneous Electron Gas*

P. HoHENBERGT
Fcole Normale Superieure, Paris, France
AND
W. Konni
Ecole Normale Superieure, Paris, France and Faculté des Sciences, Orsay, France
aid
University of California at San Diego, La Jolla, California
(Received 18 June 1964)

This paper deals with the ground state of an interacting electron gas in an external potential v(r). It is
proved that there exists a universal functional of the density, F[#(r)], independent of »(r), such that the ex-
pression E= [o(t)n(r)dr+F[»(r) ] has as its minimum value the correct ground-state energy associated with
2(r). The functional F[n(r)] is then discussed for two situations: (1)} n(r)=ne+d(r), #i/ne<<1, and
(2) n(r) = @(r/ry) with ¢ arbitrary and o — = . In both cases F can be expressed entirely in terms of the cor-
relation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach
also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of
these methods are presented.



Density Functional Theory

Hohember-Kohn Theorems (1964)

Existence:
existence of energy representation via a universal functional; or GS density

determines H.

in DFT language: electrons interact with one another and with an external potential

I = (T4 Vee ) + Vs = Ho + Vs Voo =V

\ . 7

N~

intrinsic property
of the electronic system

Proof by contradiction: let us assume that two different V., can each be consistent
with the same nondegenerate ground state density P

{(viw:E=wiaw}  # {vieL. B =i}

\ /

plr) = p/(r)



Density Functional Theory

Starting from the L.H.S.:

E<E+ / D) V(r) =V () dr "R B < B / o(r) V() = V()] dr (1)

Starting from the R.H.S.:
B <E- [ o) V() = V'()dr &)

Adding (1) and (2) yields the impossible result: £+ E' < B/ + E
There must be the UNIQUE correspondence p(r) «— V()
Normally H — 1) — p, but also p — ¥ [p(r)] = E [p(r)]

E=E(p)=T[p] + Vee o] + [ p(r)V (r)dr

universal functional
(atoms, molecules,solids)

Thus, one can build up the hamiltonian from the ground state density and therefore
obtain the ground state wave function

p—V = H— {ag + all other "¢}



Density Functional Theory

Hohember-Kohn Theorems (1964)

Variational Theorem:
the density obeys a variational principle.

Epgs] < (¢'|H|y') = E [

At least in principle, through the variational principle can find the best p without
resorting to the infamous many-body Schrodinger equation!

Problem: Fryg [p] =T [p] + Vee [p] remains unknown until now

Approximate procedure was proposed by W. Kohn and L. Sham in 1965.



Kohn-Sham Self-Consistent Field Method

PHYSICAL REVIEW VOLUME 140, NUMBER 4A 15 NOVEMEBER 1965

Self-Consistent Equations Including Exchange and Correlation Effects®

W. KonN anp L. J. SHam
University of California, San Diego, La Jolla, California
(Received 21 June 19635)

From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system
of interacting electrons are developed. These methods are exact for systems of slowly varying or high density.
FFor the ground state, they lead to self-consistent equations analogous to the Hartree and Hartree-Fock
equations, respectively. In these equations the exchange and correlation portions of the chemical potential
of a uniform electron gas appear as additional effective potentials. (The exchange portion of our effective
potential differs from that due to Slater by a factor of §.) Electronic systems at finite temperatures and in
magnetic fields are also treated by similar methods. An appendix deals with a further correction for

systems with short-wavelength density oscillations.

%W + Vers(r, [p])] pA(r) = expa(r)

with

Varg(r ) = Vi) + Vel (T2 S D)



Kohn-Sham Self-Consistent Field Method

Main approximation: use the non-interacting electron gas as a building block,
and approximate the rest.

Thus
Epl =T [p] + Vee [p] + [ p(r)V (r)dr

1S rewritten as
Elp] =T [p] + Veyy o]

with all the unknown correlations included in the exchange-correlation energy
functional that goes into the one-body effective potential V.

The eigenvalue equation for a fictitious system electrons that interact through a
one-body potential determined by the actual electronic density.

—h2

S R ANNT)| ENG RS

with

V(s [pl) = V) + OVee o] (5T o] 0To [p]>

0p 0p 0p

The eigenvalue equation must be solved through the self-consistent field (SCF)
procedure.



Kohn-Sham Self-Consistent Field Method

Thus
E (o] = T (o] + Ve [o] + [ p(r)V (r)dr

1S rewritten as

Elp) = (To[pl + Eu [p] + [ p(r)V (r)dr) + Exc [p]

with all the unknown correlations are included in the exchange-correlation energy
functional

Exc |p) = Vee |p] = En p] + T [p] = To [p] = AVee + AT

which is a universal functional.

1o and Eg are big and easy to calculate; Ex¢ is expected to be smaller.

rid
// |7“1—2\ dridra

Vxc is the unknown exchange-correlation potential

E;; is the known Hartree energy

Exc [p]
op(r)

Vxeo(r) =



Kohn-Sham Self-Consistent Field Method

The Kohn-Sham single-particle eigenvalue equation

o NS _eZ p(r')
_ V2 _ n Vv _
AP Iy AR AR At
SE
and Vxo = XC
op

The single-particle orbitals comprise the Slater-determint eigenfunction
Ne Ne

> hiBlpro-on,) = eilprpapn,)

i

)

The Kohn-Sham matrix K 4 is comparable with the Fock matrix F .

— 2
Kab— <<70a __V Z |7“— n‘ ‘r,a_

So far DFT is exact, although unsoluble.

+VX




Local Density Approximation (LDA)

DFT is, in principle, an exact theory, as long as we know V.

The LDA, introduced by KS is the simplest approximation method, which has been
surprisingly successful.

In general one writes:

Exc [p(r)] = / o(r) exc [p(r)) dr

separating the contributions from exchange and correlation

exc |p(r)] =ex [p(r)] +ec [p(r)]
Because:

* usually Ex > &,

* €y is known exactly for the homogeneous electron system

For the jellium system

9 [/3\Y3 )
Egx [,0] — _ga <_> ,01/3 o = § for LDA



Local Density Approximation (LDA)

e The correlation part is much more complicated

* use results from Quantum Monte Carlo by Ceperley-Alder to fit € for various

densities.

LDA method:
discretize in a grid: p(r) — p; so that n; = [, p(r)dr = p;V;
p; must be single valued, but otherwise can be wildly ill-behaved

(cusps at the nuclei positions)

Perform a grid integration to obtain

EXe! [p] = Z exc(pi) piVi
" for the
uniform gas

and vERA = / o e xc(p(r’))dr

p(r)
= exeplr) + otr) (2522

p=p(r)



Local Density Approximation (LDA)

im=n(r,)

im=n(r)

Walt qhn Walter Kohn LDA_

http://web.missouri.edu/~ullrichc/



Density Gradient Corrections

e LDA is a local DFT
e beyond that there is gradient corrected semi-local DFT

for instance, GGA is Generalized Gradient Approximation

ek’ Ing,my] = /éxc (nt,ny, Vng, V) p(r) dr

semi-local: r + 0/0r versus (r,17)

Self-Interaction in DFT

In the LDA method every electron interacts with its own electron desity
which is physically unacceptable.
In particular, the sum of Hartree, E;; , and exchange-correlation, Ex. , energies

for a Hidrogen atom (single electron) should be zero (cancel out), but it does not
happen in general for DFT functionals.

<¢ > 1] [ O S a3 [ [ PR

h(ry,ry) is the pair distribution (hole) function.
there is not self-interaction in HF since Coulomb and exchange integrals cancel

out by construction.
hybrid functionals (BSLYP, PBEO, HSE, etc.) incorporate exact exchange from HF.

i< r”



HF X DFT : In summary

HEF: effective potential is nonlocal.
DFT: effective potential is local (LDA) . GGA is semi-local approximation.

HF: exchange interaction is treated exactly; correlation effects not present at all.
DFT: both exchange and correlation are included, at some level of approximation.

HF: deliberately approximate theory, whose equations can be solved exactly
(for small systems at least).

e DFT: exact theory whose equations can only be solved approximately.

« If the same basis are used, the KS matrix, K, is the same as Fock matrix, Fy, ,
except for the exchange-correlation parts.
* historically, this made easy the transition from HF to DFT.



Flow chart of a KS-SCF procedure

choose basis set(s) P(”)(r, r') = p(”)(r, ') =2 Zi\feﬂ so§”) (fr)go(-n)(r’)

7
v
(0)

choose a molecular geometry q

- el . . 0
guess initial density matrix P

compute and store overlap / #

construct and solve the KS equation

and one-electron integrals r»
A v

m-1 .. _(m construct density matrix from
replace P with P occupied KS MOs

"so ‘

. . .o . .
is new density matrix P~ sufficiently

choose new geometry according

. . . (n-1)
to optimization geometry similar to old density matrix P

NO f L YES
: . YES optimize molecular geometry?
satisfy the optimization /
criteria? # NO
# YES output data for

output data for optimized geometry unoptimized geometry




Computational Cost

Scaling: Hartree-Fock
Epr = 2267; — Z(2Jz’j — Kij)
? 2,]
€i = Eigenvalues = Diagonalization = O(N®)
Ji;, K;; —* Coulomb, exchange integrals — » O(N?)

1
71 — 72

%:/@mwwg $s(r1)b; (r2)

l@z/wmwwwméa@mwmg

Diagonalization:

FCZ — EZSCZ
Generally — O(N?)

Prefactor depends on algorithm



Computational Cost

Two-eletron four-center integrals:

Ty = [ [ desdra 61)65r2) = 01(r1)05 ()

¢(r) are molecular orbitals which can be written in terms of atom centered orbitals:

¢z(r) = Za ClaiXi (T) , so that

ij N . 1
Jij= ) Qa]bcd//drldr2 Xa(r1)Xx5p (r2) ﬁxc(ﬁ)xcz(@)

a,b,c,d |T’1

Life is hard:
There are formally O(N*) of these integrals for a basis set of size N

But in practice... truncation:

for a suitable choice of localized orbitals the number of nonnegligible integrals
grows as O(N?)

unless .S;; is non-negligible.




Computational Cost

LAPACK (driver routines)

Method

Divide & Conquer

Tridiagonal QR

Bisection and Inverse Iteration

Relatively Robust Representations

Random Dense matrices, time relative to DC = 1

QR

BZ (Bisection + inverse iteration)

DC (divide and conquer) = 1

TRD (lower bound: tridiagonal reduction + matmul)

1QR

BZ

TRD

i
100

' A ' L
200 300 400 500 8600 700 800 800 1000
matrix size

Routine

xSYEVD / xSYGVD
xSYEV / xSYGV
XxSYEVX / xSYGVX
xSYEVR

James W. Demmel,
Applied Numerical Linear Algebra,
pg. 238



Computational Cost

Diagonalization:

[terative methods (subspace methods):

General idea: Minimize residual vector

[terate through subspace

r=(A-=X)v —» O

Power method
Lanczos

Arnoldi

...their variants
...and many more

— » Active research area



Computational Cost

Diagonalization:

[terative methods: O(N) methods

Based on physical approximations: Quantum locality

Solve
Divide IR Conquer
— ) @ o

. ©® O *° o0 o © 09
AT ASRET i Y TLI
0 %5 e° %o Y 4 e%50%%Je

e ® oo O: VLl N e ® ¢0,"° 2/.
oo oo 0 soe : o0 0c0 ‘; P

g0 ® ® e0° o.‘ﬁ,ooo °
:.bQO'oW LA o 900°0’o
0e%0 0%/ 09 e egfecs® el
® 0... .H ® ,ﬁ.-\ o

®ee o o / oo o *

http://www.openmx-square.org/tech notes/Krylov. WS08.pdf



Computational Cost

Diagonalization:

[terative methods: O(N) methods

Prefactor may be relevant !

~N, small prefactor

100 200 300 atoms



Diagonalization:

Computational Cost

[terative methods: O(N) methods

Carbon diamond

D)

Elapsed Time for Diagonalization (min/M

500

N
o
o

300F

(a)

—e— k-space
—e— Proposed
DC

8CPUs
k-space  —» Direct method (which?)

Proposed —> Krylov
DC —» Divide & Conquer

1 1 1 I 1 |
600 800 1000

150}

—e— k-space
—e— Proposed

DC

—

'32 CPUs

O(N) Krylov-subspace method for
large-scale ab initio electronic

200

400

/./ _' structure calculations

e e e Taisuke Ozaki
600 800 1000

Number of Atoms Phys. Rev. B 74, 245101 (2006)



Computational Cost

Various linear scaling methods

Wannier functions (WF) Varnational (V)

X
Density matrix (DM) Perturbative (P)

At least four kinds of linear-scaling methods
can be considered as follows:

WF+V WF+P DM+V DM+P
Orbital Hoshi Density matrix ~ Krylov subspace
minimization Mostofi by Liand Daw Divide-conquer
and Ordejon

Fermi operator

http://www.openmzx-square.org/tech notes/Krylov. WS08.pdf
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